Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130614, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38598971

RESUMEN

BACKGROUND: Deregulation of cell death is a common characteristic of cancer, and resistance to this process often occurs in lung cancer. Understanding the molecular mechanisms underlying an aberrant cell death is important. Recent studies have emphasized the involvement of calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) in lung cancer aggressiveness, its influence on cell death regulation remains largely unexplored. METHODS: CAMSAP3 was knockout in lung cancer cells using CRISPR-Cas9 system. Cell death and autophagy were evaluated using MTT and autophagic detection assays. Protein interactions were performed by proteomic analysis and immunoprecipitation. Protein expressions and their cytoplasmic localization were analyzed through immunoblotting and immunofluorescence techniques. RESULTS: This study reveals a significant correlation between low CAMSAP3 expression and poor overall survival rates in lung cancer patients. Proteomic analysis identified high mobility group box 1 (HMGB1) as a candidate interacting protein involved in the regulation of cell death. Treatment with trichostatin A (TSA), an inhibitor of histone deacetylases (HDACs) resulted in increased HMGB1 acetylation and its translocation to the cytoplasm and secretion, thereby inducing autophagic cell death. However, this process was diminished in CAMSAP3 knockout lung cancer cells. Mechanistically, immunoprecipitation indicated an interaction between CAMSAP3 and HMGB1, particularly with its acetylated form, in which this complex was elevated in the presence of TSA. CONCLUSIONS: CAMSAP3 is prerequisite for TSA-mediated autophagic cell death by interacting with cytoplasmic acetylated HMGB1 and enhancing its release. SIGNIFICANT: This finding provides molecular insights into the role of CAMSAP3 in regulating cell death, highlighting its potential as a therapeutic target for lung cancer treatment.


Asunto(s)
Proteína HMGB1 , Neoplasias Pulmonares , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Acetilación , Autofagia , Línea Celular Tumoral , Muerte Celular , Células A549 , Ácidos Hidroxámicos/farmacología
2.
PLoS One ; 18(10): e0292879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37878600

RESUMEN

Next generation sequencing of circulating tumor DNA (ctDNA) has been used as a noninvasive alternative for cancer diagnosis and characterization of tumor mutational landscape. However, low ctDNA fraction and other factors can limit the ability of ctDNA analysis to capture tumor-specific and actionable variants. In this study, whole-exome sequencings (WES) were performed on paired ctDNA and tumor biopsy in 15 cancer patients to assess the extent of concordance between mutational profiles derived from the two source materials. We found that up to 16.4% ctDNA fraction can still be insufficient for detecting tumor-specific variants and that good concordance with tumor biopsy is consistently achieved at higher ctDNA fractions. Most importantly, ctDNA analysis can consistently capture tumor heterogeneity and detect key cancer-related genes even in a patient with both primary and metastatic tumors.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , ADN Tumoral Circulante/genética , Secuenciación del Exoma , Biomarcadores de Tumor/genética , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patología , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Life Sci ; 322: 121655, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019300

RESUMEN

AIMS: Cancer metastasis is a major cause of lung cancer-related mortality, so identification of related molecular mechanisms is of interest. Calmodulin-regulated spectrin-associated protein 3 (CAMSAP3) has been implicated in lung cancer malignancies; however, its role in metastatic processes, including invasion and angiogenesis, is largely unknown. MAIN METHOD: The clinical relevance of CAMSAP3 expression in lung cancer was evaluated. The relevance of CAMSAP3 expression to in vitro cell invasion and angiogenesis was assessed in human lung cancer cells and endothelial cells, respectively. The molecular mechanism was identified by qRT-PCR, immunoprecipitation, mass spectrometry, and RNA immunoprecipitation. The in vivo metastatic and angiogenic activities of lung cancer cells were assessed. KEY FINDINGS: Low CAMSAP3 expression was found in malignant lung tissues and strongly correlated with a poor prognosis in lung adenocarcinoma (LUAD). CAMSAP3-knockout NSCLC exhibited high invasive ability, and CAMSAP3 knockout induced HUVEC proliferation and tube formation; these effects were significantly attenuated by reintroduction of exogenous wild-type CAMSAP3. Mechanistically, in the absence of CAMSAP3, the expression of hypoxia-inducible factor-1α (HIF-1α) was upregulated, which increased the levels of downstream HIF-1α targets such as vascular endothelial growth factor A (VEGFA) and matrix metalloproteinases (MMPs) 2 and 9. Proteomic analysis revealed that nucleolin (NCL) bound to CAMSAP3 to regulate HIF-1α mRNA stabilization. In addition, CAMSAP3-knockout lung cancer cells displayed highly aggressive behavior in metastasis and angiogenesis in vivo. SIGNIFICANCE: This study reveals that CAMSAP3 plays a negative regulatory role in lung cancer cell metastatic behavior both in vitro and in vivo through NCL/HIF-1α mRNA complex stabilization.


Asunto(s)
Neoplasias Pulmonares , Espectrina , Humanos , Espectrina/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteómica , Línea Celular Tumoral , Neoplasias Pulmonares/patología , Regulación Neoplásica de la Expresión Génica , Pulmón/metabolismo , Invasividad Neoplásica/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nucleolina
4.
Sci Rep ; 13(1): 7037, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120454

RESUMEN

mTOR complex 2 (mTORC2) has been implicated as a key regulator of glioblastoma cell migration. However, the roles of mTORC2 in the migrational control process have not been entirely elucidated. Here, we elaborate that active mTORC2 is crucial for GBM cell motility. Inhibition of mTORC2 impaired cell movement and negatively affected microfilament and microtubule functions. We also aimed to characterize important players involved in the regulation of cell migration and other mTORC2-mediated cellular processes in GBM cells. Therefore, we quantitatively characterized the alteration of the mTORC2 interactome under selective conditions using affinity purification-mass spectrometry in glioblastoma. We demonstrated that changes in cell migration ability specifically altered mTORC2-associated proteins. GSN was identified as one of the most dynamic proteins. The mTORC2-GSN linkage was mostly highlighted in high-grade glioma cells, connecting functional mTORC2 to multiple proteins responsible for directional cell movement in GBM. Loss of GSN disconnected mTORC2 from numerous cytoskeletal proteins and affected the membrane localization of mTORC2. In addition, we reported 86 stable mTORC2-interacting proteins involved in diverse molecular functions, predominantly cytoskeletal remodeling, in GBM. Our findings might help expand future opportunities for predicting the highly migratory phenotype of brain cancers in clinical investigations.


Asunto(s)
Gelsolina , Glioblastoma , Humanos , Gelsolina/metabolismo , Glioblastoma/metabolismo , Transducción de Señal , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Proteínas/metabolismo , Movimiento Celular/genética , Línea Celular Tumoral
5.
J Biomed Sci ; 30(1): 4, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639650

RESUMEN

BACKGROUND: The leading cause of cancer-related mortality worldwide is lung cancer, and its clinical outcome and prognosis are still unsatisfactory. The understanding of potential molecular targets is necessary for clinical implications in precision diagnostic and/or therapeutic purposes. Histone deacetylase 6 (HDAC6), a major deacetylase enzyme, is a promising target for cancer therapy; however, the molecular mechanism regulating cancer pathogenesis is largely unknown. METHODS: The clinical relevance of HDAC6 expression levels and their correlation with the overall survival rate were analyzed based on the TCGA and GEO databases. HDAC6 expression in clinical samples obtained from lung cancer tissues and patient-derived primary lung cancer cells was evaluated using qRT-PCR and Western blot analysis. The potential regulatory mechanism of HDAC6 was identified by proteomic analysis and validated by immunoblotting, immunofluorescence, microtubule sedimentation, and immunoprecipitation-mass spectrometry (IP-MS) assays using a specific inhibitor of HDAC6, trichostatin A (TSA) and RNA interference to HDAC6 (siHDAC6). Lung cancer cell growth was assessed by an in vitro 2-dimensional (2D) cell proliferation assay and 3D tumor spheroid formation using patient-derived lung cancer cells. RESULTS: HDAC6 was upregulated in lung cancer specimens and significantly correlated with poor prognosis. Inhibition of HDAC6 by TSA and siHDAC6 caused downregulation of phosphorylated extracellular signal-regulated kinase (p-ERK), which was dependent on the tubulin acetylation status. Tubulin acetylation induced by TSA and siHDAC6 mediated the dissociation of p-ERK on microtubules, causing p-ERK destabilization. The proteomic analysis demonstrated that the molecular chaperone glucose-regulated protein 78 (GRP78) was an important scaffolder required for p-ERK localization on microtubules, and this phenomenon was significantly inhibited by either TSA, siHDAC6, or siGRP78. In addition, suppression of HDAC6 strongly attenuated an in vitro 2D lung cancer cell growth and an in vitro 3D patient derived-lung cancer spheroid growth. CONCLUSIONS: HDAC6 inhibition led to upregulate tubulin acetylation, causing GRP78-p-ERK dissociation from microtubules. As a result, p-ERK levels were decreased, and lung cancer cell growth was subsequently suppressed. This study reveals the intriguing role and molecular mechanism of HDAC6 as a tumor promoter, and its inhibition represents a promising approach for anticancer therapy.


Asunto(s)
Histona Desacetilasa 6 , Inhibidores de Histona Desacetilasas , Neoplasias Pulmonares , Tubulina (Proteína) , Humanos , Acetilación , Proliferación Celular , Chaperón BiP del Retículo Endoplásmico , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pulmonares/genética , Fosforilación , Proteómica , Tubulina (Proteína)/metabolismo
6.
J Proteome Res ; 21(12): 2893-2904, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36315652

RESUMEN

Glioblastoma (GBM) is a devastating primary brain cancer with a poor prognosis. GBM is associated with an abnormal mechanistic target of rapamycin (mTOR) signaling pathway, consisting of two distinct kinase complexes: mTORC1 and mTORC2. The complexes play critical roles in cell proliferation, survival, migration, metabolism, and DNA damage response. This study investigated the aberrant mTORC2 signaling pathway in GBM cells by performing quantitative phosphoproteomic analysis of U87MG cells under different drug treatment conditions. Interestingly, a functional analysis of phosphoproteome revealed that mTORC2 inhibition might be involved in double-strand break (DSB) repair. We further characterized the relationship between mTORC2 and BRISC and BRCA1-A complex member 1 (BABAM1). We demonstrated that pBABAM1 at Ser29 is regulated by mTORC2 to initiate DNA damage response, contributing to DNA repair and cancer cell survival. Accordingly, the inactivation of mTORC2 significantly ablated pBABAM1 (Ser29), reduced DNA repair activities in the nucleus, and promoted apoptosis of the cancer cells. Furthermore, we also recognized that histone H2AX phosphorylation at Ser139 (γH2AX) could be controlled by mTORC2 to repair the DNA. These results provided a better understanding of the mTORC2 function in oncogenic DNA damage response and might lead to specific mTORC2 treatments for brain cancer patients in the future.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Glioblastoma/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Complejos Multiproteicos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias Encefálicas/metabolismo , Daño del ADN , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Exp Biol Med (Maywood) ; 247(14): 1228-1234, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35473361

RESUMEN

COVID-19 is an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus affecting the world population. Early detection has become one of the most successful strategies to alleviate the epidemic and pandemic of this contagious coronavirus. Surveillance testing programs have been initiated in many countries worldwide to prevent the outbreak of COVID-19. In this study, we demonstrated that our previously established clustered regularly interspaced short palindromic repeats (CRISPR)-Cas12a-based assay could detect variants of concern during 2021 in Thailand, including Alpha, Beta, and Delta strains as well as Omicron strain in early 2022. In combination with the newly designed saliva collection funnel, we established a safe, simple, economical, and efficient self-collection protocol for the COVID-19 screening process. We successfully utilized the assay in an active case finding with a total number of 578 asymptomatic participants to detect the SARS-CoV-2 in saliva samples. We finally demonstrated that the validation and evaluation in a large-scale setting could provide valuable information and elaborate the practicality of the test in real-world settings. Our optimized protocol yielded effective results with high sensitivity, specificity, and diagnostic accuracy (96.86%). In addition, this study demonstrates COVID-19 active case findings in low-resource settings, which would be feasible and attractive for surveillance and outbreak prevention in the future.


Asunto(s)
COVID-19 , COVID-19/diagnóstico , Sistemas CRISPR-Cas/genética , Humanos , Pandemias/prevención & control , SARS-CoV-2/genética , Saliva , Sensibilidad y Especificidad
8.
J Proteomics ; 259: 104559, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283353

RESUMEN

This study focuses on comprehensive characterization of the venom proteome of the beaked sea snake (Hydrophis schistosus) from Songkhla Lake, Thailand. H. schistosus can be considered as the deadliest sea snake commonly found in the Pacific and Indian oceans. Their envenomation causes muscular paralysis and rhabdomyolysis. To develop effective treatment for this snakebite, it is necessary to understand the detailed venom composition. In this study, multiple mass spectrometry-based approaches were employed. Bottom-up proteomics revealed that tryptic digestion in-solution provided a higher number of toxin proteins identified and a larger sequence coverage, compared to in-gel digestion. In addition, a venom gland transcriptome-derived database was constructed and used as a reference, which 43 known and novel toxin proteins were identified using this database and the UniProtKB. Three-finger toxin and phospholipase A2 were shown to be top two most abundant protein families. Minor compositions included other toxin families and a number of non-toxin proteins. Moreover, a hybrid de novo sequencing was performed to enhance identification of the small proteins/peptides. Using non-digested samples, there were 46 predicted toxin peptides. The finding from this study could lead to a better understanding in pathological effects of the snakebite and the future development of effective antivenoms. SIGNIFICANCE: This study provides a better understanding of the venom proteome composition of the beaked sea snake (H. schistosus) found in the Gulf of Thailand, using a combination of different sample preparation techniques, Serpentes protein database searching, transcriptome-derived protein database searching, and a hybrid de novo peptide sequencing strategy. It revealed 13 toxin protein families and novel proteins in the beaked sea snake venom including new species of phospholipase A2s (PLA2s) and three-finger toxins (3FTxs). It could serve as a basis for the development of snakebite treatments and for the discovery of novel pharmaceutical drugs from the toxin peptides.


Asunto(s)
Hydrophiidae , Mordeduras de Serpientes , Toxinas Biológicas , Animales , Venenos Elapídicos/química , Hydrophiidae/metabolismo , Lagos , Fosfolipasas A2/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Tailandia
9.
Cancer Med ; 10(24): 8961-8975, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34724356

RESUMEN

BACKGROUND: Cellular senescence is an aging-related process found in cancer cells that contributes to irreversible growth arrest and tumor aggressiveness. Recently, calmodulin-regulated spectrin-associated protein 3 (CAMSAP3), a minus-end microtubule-stabilizing protein, has received increasing attention in cancer cell biology. However, the biological role of CAMSAP3 on senescence in human lung cancer remains incompletely understood. METHODS: The function of CAMSAP3 on the regulation of cellular senescence-associated phenotypes in human non-small cell lung cancer H460 cells were determined in CAMSAP3 deletion (H460/C3ko) cells. The effects of CAMSAP3 on cell proliferation were investigated using MTT and colony formation assays. The cell cycle activity was evaluated by flow cytometry and the senescence-associated phenotypes were observed by SA-ß-Gal staining. Quantitative RT-PCR and westen blot were used to evaluate the expression of cell cycle and senescence markers. Moreover, the interaction of CAMSAP3-ERK1/2 and possible partner protein was quantified using immunoprecipitation/mass spectrometry and immunofluorescence. Lastly, an xenograft model were performed. RESULTS: CAMSAP3 knockout promotes lung cancer cell senescence-associated phenotypes and induces G1 cell cycle arrest. Mechanistic investigation revealed that phosphorylated ERK (p-ERK) was markedly downregulated in CAMSAP3-deleted cells, suppressing cyclin D1 expression levels, and full-length CAMSAP3 abrogated these phenotypes. Proteomic analysis demonstrated that vimentin, an intermediate filament protein, is required as a scaffold for CAMSAP3-modulating ERK signaling. Furthermore, an in vivo tumor xenograft experiment showed that tumor initiation is potentially delayed in CAMSAP3 knockout tumors with the downregulation of p-ERK and cyclin D1, resulting in a senescence-like phenotype. CONCLUSION: This study is the first to report an intriguing role of CAMSAP3 in lung carcinoma cell senescence-associated phenotypes via the modulation of p-ERK/cyclin D1 signaling.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Neoplasias Pulmonares/genética , Proteínas Asociadas a Microtúbulos/deficiencia , Anfetaminas , Animales , Proliferación Celular , Senescencia Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Fenotipo , Transducción de Señal , Transfección
11.
iScience ; 23(9): 101530, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-33083760

RESUMEN

Signaling through stimulator of interferon genes (STING) leads to the production of type I interferons (IFN-Is) and inflammatory cytokines. A gain-of-function mutation in STING was identified in an autoinflammatory disease (STING-associated vasculopathy with onset in infancy; SAVI). The expression of cyclic GMP-AMP, DNA-activated cGAS-STING pathway, increased in a proportion of patients with SLE. The STING signaling pathway may be a candidate for targeted therapy in SLE. Here, we demonstrated that disruption of STING signaling ameliorated lupus development in Fcgr2b-deficient mice. Activation of STING promoted maturation of conventional dendritic cells and differentiation of plasmacytoid dendritic cells via LYN interaction and phosphorylation. The inhibition of LYN decreased the differentiation of STING-activated dendritic cells. Adoptive transfer of STING-activated bone marrow-derived dendritic cells into the FCGR2B and STING double-deficiency mice restored lupus phenotypes. These findings provide evidence that the inhibition of STING signaling may be a candidate targeted treatment for a subset of patients with SLE.

12.
J Am Soc Mass Spectrom ; 31(5): 1155-1162, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32196330

RESUMEN

Analysis of proteins and complexes under native mass spectrometric (MS) and solution conditions was typically performed using time-of-flight (ToF) analyzers, due to their routine high m/z transmission and detection capabilities. However, over recent years, the ability of Orbitrap-based mass spectrometers to transmit and detect a range of high molecular weight species is well documented. Herein, we describe how a 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer (15 T FT-ICR MS) is more than capable of analyzing a wide range of ions in the high m/z scale (>5000), in both positive and negative instrument polarities, ranging from the inorganic cesium iodide salt clusters; a humanized IgG1k monoclonal antibody (mAb; 148.2 kDa); an IgG1-mertansine drug conjugate (148.5 kDa, drug-to-antibody ratio; DAR 2.26); an IgG1-siRNA conjugate (159.1 kDa; ribonucleic acid to antibody ratio; RAR 1); the membrane protein aquaporin-Z (97.2 kDa) liberated from a C8E4 detergent micelle; the empty MSP1D1-nanodisc (142.5 kDa) and the tetradecameric chaperone protein complex GroEL (806.2 kDa; GroEL dimer at 1.6 MDa). We also investigate different regions of the FT-ICR MS that impact ion transmission and desolvation. Finally, we demonstrate how the transmission of these species and resultant spectra are highly consistent with those previously generated on both quadrupole-ToF (Q-ToF) and Orbitrap instrumentation. This report serves as an impactful example of how FT-ICR mass analyzers are competitive to Q-ToFs and Orbitraps for high mass detection at high m/z.


Asunto(s)
Ciclotrones , Análisis de Fourier , Inmunoconjugados/química , Espectrometría de Masas/métodos , Sales (Química)/química , Anticuerpos Monoclonales/química , Cesio/química , Chaperonina 60/química , Inmunoglobulina G/química , Cadenas kappa de Inmunoglobulina/química , Yoduros/química , Maitansina/química , Peso Molecular , ARN Interferente Pequeño/química
13.
J Biol Chem ; 294(10): 3501-3513, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30602569

RESUMEN

Mutations in superoxide dismutase 1 (SOD1) cause 15-20% of familial amyotrophic lateral sclerosis (fALS) cases. The resulting amino acid substitutions destabilize SOD1's protein structure, leading to its self-assembly into neurotoxic oligomers and aggregates, a process hypothesized to cause the characteristic motor-neuron degeneration in affected individuals. Currently, effective disease-modifying therapy is not available for ALS. Molecular tweezers prevent formation of toxic protein assemblies, yet their protective action has not been tested previously on SOD1 or in the context of ALS. Here, we tested the molecular tweezer CLR01-a broad-spectrum inhibitor of the self-assembly and toxicity of amyloid proteins-as a potential therapeutic agent for ALS. Using recombinant WT and mutant SOD1, we found that CLR01 inhibited the aggregation of all tested SOD1 forms in vitro Next, we examined whether CLR01 could prevent the formation of misfolded SOD1 in the G93A-SOD1 mouse model of ALS and whether such inhibition would have a beneficial therapeutic effect. CLR01 treatment decreased misfolded SOD1 in the spinal cord significantly. However, these histological findings did not correlate with improvement of the disease phenotype. A small, dose-dependent decrease in disease duration was found in CLR01-treated mice, relative to vehicle-treated animals, yet motor function did not improve in any of the treatment groups. These results demonstrate that CLR01 can inhibit SOD1 misfolding and aggregation both in vitro and in vivo, but raise the question whether such inhibition is sufficient for achieving a therapeutic effect. Additional studies in other less aggressive ALS models may be needed to determine the therapeutic potential of this approach.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Hidrocarburos Aromáticos con Puentes/farmacología , Mutación , Organofosfatos/farmacología , Superóxido Dismutasa-1/química , Superóxido Dismutasa-1/genética , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Sitios de Unión , Peso Corporal/efectos de los fármacos , Hidrocarburos Aromáticos con Puentes/metabolismo , Modelos Animales de Enfermedad , Ratones , Fuerza Muscular/efectos de los fármacos , Organofosfatos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Superóxido Dismutasa-1/metabolismo , Análisis de Supervivencia
14.
J Am Soc Mass Spectrom ; 30(1): 16-23, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30062477

RESUMEN

Native top-down mass spectrometry (MS) and ion mobility spectrometry (IMS) were applied to characterize the interaction of a molecular tweezer assembly modulator, CLR01, with tau, a protein believed to be involved in a number of neurodegenerative disorders, including Alzheimer's disease. The tweezer CLR01 has been shown to inhibit aggregation of amyloidogenic polypeptides without toxic side effects. ESI-MS spectra for different forms of tau protein (full-length, fragments, phosphorylated, etc.) in the presence of CLR01 indicate a primary binding stoichiometry of 1:1. The relatively high charging of the protein measured from non-denaturing solutions is typical of intrinsically disordered proteins, such as tau. Top-down mass spectrometry using electron capture dissociation (ECD) is a tool used to determine not only the sites of post-translational modifications but also the binding site(s) of non-covalent interacting ligands to biomolecules. The intact protein and the protein-modulator complex were subjected to ECD-MS to obtain sequence information, map phosphorylation sites, and pinpoint the sites of inhibitor binding. The ESI-MS study of intact tau proteins indicates that top-down MS is amenable to the study of various tau isoforms and their post-translational modifications (PTMs). The ECD-MS data point to a CLR01 binding site in the microtubule-binding region of tau, spanning residues K294-K331, which includes a six-residue nucleating segment PHF6 (VQIVYK) implicated in aggregation. Furthermore, ion mobility experiments on the tau fragment in the presence of CLR01 and phosphorylated tau reveal a shift towards a more compact structure. The mass spectrometry study suggests a picture for the molecular mechanism of the modulation of protein-protein interactions in tau by CLR01. Graphical Abstract ᅟ.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/metabolismo , Espectrometría de Movilidad Iónica/métodos , Organofosfatos/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos , Proteínas tau/química , Proteínas tau/metabolismo , Sitios de Unión , Hidrocarburos Aromáticos con Puentes/química , Concentración de Iones de Hidrógeno , Organofosfatos/química , Fosforilación
15.
J Am Soc Mass Spectrom ; 29(9): 1870-1880, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29951842

RESUMEN

Structural characterization of intrinsically disordered proteins (IDPs) has been a major challenge in the field of protein science due to limited capabilities to obtain full-length high-resolution structures. Native ESI-MS with top-down MS was utilized to obtain structural features of protein-ligand binding for the Parkinson's disease-related protein, α-synuclein (αSyn), which is natively unstructured. Binding of heavy metals has been implicated in the accelerated formation of αSyn aggregation. Using high-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry, native top-down MS with various fragmentation methods, including electron capture dissociation (ECD), collisional activated dissociation (CAD), and multistage tandem MS (MS3), deduced the binding sites of cobalt and manganese to the C-terminal region of the protein. Ion mobility MS (IM-MS) revealed a collapse toward compacted states of αSyn upon metal binding. The combination of native top-down MS and IM-MS provides structural information of protein-ligand interactions for intrinsically disordered proteins. Graphical Abstract ᅟ.


Asunto(s)
Cobalto/química , Manganeso/química , Espectrometría de Masa por Ionización de Electrospray/métodos , alfa-Sinucleína/química , Cobalto/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Espectrometría de Masas en Tándem/métodos , alfa-Sinucleína/metabolismo
16.
Angew Chem Int Ed Engl ; 57(12): 3099-3103, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29368447

RESUMEN

Structural variation of α-synuclein (αSyn) fibrils has been linked to the diverse etiologies of synucleinopathies. However, little is known about what specific mechanism provides αSyn fibrils with pathologic features. Herein, we demonstrate Cu(II)-based supramolecular approach for unraveling the formation process of pathogenic αSyn fibrils and its application in a neurotoxic mechanism study. The conformation of αSyn monomer was strained by macrochelation with Cu(II), thereby disrupting the fibril elongation while promoting its nucleation. This non-canonical process formed shortened, ß-sheet enriched αSyn fibrils (<0.2 µm) that were rapidly transmitted and accumulated to neuronal cells, causing neuronal cell death, in sharp contrast to typical αSyn fibrils (ca. 1 µm). Our approach provided the supramolecular basis for the formation of pathogenic fibrils through physiological factors, such as brain Cu(II).


Asunto(s)
Cobre/metabolismo , Polimorfismo Genético/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animales , Cobre/química , Humanos , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Modelos Moleculares , Neuronas/química , Neuronas/metabolismo , Conformación Proteica , Ratas , Células Tumorales Cultivadas , alfa-Sinucleína/química
17.
Anal Chem ; 89(16): 8244-8250, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28723075

RESUMEN

Biologists' preeminent toolbox for separating, analyzing, and visualizing proteins is SDS-PAGE, yet recovering the proteins embedded in these polyacrylamide media as intact species is a long-standing challenge for mass spectrometry. In conventional workflows, protein mixtures from crude biological samples are electrophoretically separated at high-resolution within N,N'-methylene-bis-acrylamide cross-linked polyacrylamide gels to reduce sample complexity and facilitate sensitive characterization. However, low protein recoveries, especially for high molecular weight proteins, often hinder characterization by mass spectrometry. We describe a workflow for top-down/bottom-up mass spectrometric analyses of proteins in polyacrylamide slab gels using dissolvable, bis-acryloylcystamine-cross-linked polyacrylamide, enabling high-resolution protein separations while recovering intact proteins over a broad size range efficiently. The inferior electrophoretic resolution long associated with reducible gels has been overcome, as demonstrated by SDS-PAGE of crude tissue extracts. This workflow elutes intact proteins efficiently, supporting MS and MS/MS from proteins resolved on biologists' preferred separation platform.


Asunto(s)
Resinas Acrílicas/química , Geles/química , Proteínas de Insectos/análisis , Animales , Drosophila melanogaster , Electroforesis en Gel de Poliacrilamida/instrumentación , Electroforesis en Gel de Poliacrilamida/métodos , Espectrometría de Masas/métodos , Proteómica/métodos
18.
Int J Mass Spectrom ; 390: 137-145, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26644781

RESUMEN

The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

19.
Mol Cancer ; 14: 127, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26134617

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. GBM has been associated with a high level of the mechanistic target of rapamycin complex 2 (mTORC2) activity. We aimed to observe roles of mTORC2 in GBM cells especially on actin cytoskeleton reorganization, cell migration and invasion, and further determine new important players involved in the regulation of these cellular processes. METHODS: To further investigate the significance of mTORC2 in GBM, we treated GBM cells with PP242, an ATP-competitive inhibitor of mTOR, and used RICTOR siRNA to knock down mTORC2 activity. Effects on actin cytoskeleton, focal adhesion, migration, and invasion of GBM cells were examined. To gain insight into molecular basis of the mTORC2 effects on cellular cytoskeletal arrangement and motility/invasion, we affinity purified mTORC2 from GBM cells and identified proteins of interest by mass spectrometry. Characterization of the protein of interest was performed. RESULTS: In addition to the inhibition of mTORC2 activity, we demonstrated significant alteration of actin distribution as revealed by the use of phalloidin staining. Furthermore, vinculin staining was altered which suggests changes in focal adhesion. Inhibition of cell migration and invasion was observed with PP242. Two major proteins that are associated with this mTORC2 multiprotein complex were found. Mass spectrometry identified one of them as Filamin A (FLNA). Association of FLNA with RICTOR but not mTOR was demonstrated. Moreover, in vitro, purified mTORC2 can phosphorylate FLNA likewise its known substrate, AKT. In GBM cells, colocalization of FLNA with RICTOR was observed, and the overall amounts of FLNA protein as well as phosphorylated FLNA are high. Upon treatments of RICTOR siRNA or PP242, phosphorylated FLNA levels at the regulatory residue (Ser2152) decreased. This treatment also disrupted colocalization of Actin filaments and FLNA. CONCLUSIONS: Our results support FLNA as a new downstream effector of mTORC2 controlling GBM cell motility. This new mTORC2-FLNA signaling pathway plays important roles in motility and invasion of glioblastoma cells.


Asunto(s)
Filaminas/metabolismo , Glioblastoma/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Portadoras/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Glioblastoma/patología , Humanos , Indoles/farmacología , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/antagonistas & inhibidores , Fosforilación , Unión Proteica , Purinas/farmacología , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
20.
Rapid Commun Mass Spectrom ; 28(24): 2729-34, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25380495

RESUMEN

RATIONALE: Recent experiments utilizing photodissociation in linear ion traps have enabled significant development of Radical-Directed Dissociation (RDD) for the examination of peptides and proteins. The increased mass accuracy and resolution available in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) should enable further progress in this area. Preliminary experiments with photoactivated radicals are reported herein. METHODS: A 266 nm Nd:YAG laser is coupled to a FTICR or linear ion trap mass spectrometer. Radical peptides and proteins are generated by ultraviolet photodissociation (PD) and further activated by collisions or infrared photons. RESULTS: A 266 nm UV laser and an IR laser can be simultaneously coupled to a 15 Tesla FTICR mass spectrometer. The ultra-low-pressure environment in FTICR-MS makes collisional cooling less competitive, and thus more secondary fragments are generated by UVPD than in linear ion traps. Activation by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) or infrared multiphoton dissociation (IRMPD) also yields additional secondary fragmentation relative to CID in an ion trap. Accurate identification of RDD fragments is possible in FTICR-MS. CONCLUSIONS: Relative to linear ion trap instruments, PD experiments in FTICR-MS are more difficult to execute due to poor ion cloud overlap and the low pressure environment. However, the results can be more easily interpreted due to the increased resolution and mass accuracy.


Asunto(s)
Espectrometría de Masas/métodos , Péptidos/química , Proteínas/química , Iones/química , Láseres de Estado Sólido , Peso Molecular , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...